
Robix Scripting Reference
This document may be copied and printed as desired.

Feedback: desk@robix.com Home: www.Robix.com Last mod: 2005-02-14

The Robix script language is designed for programming motion sequences and setting
motion parameters. The language has intentionally been kept simple.

While many interesting and useful programs can be written directly in scripts,
the script language intentionally lacks general programming constructs
including variables, conditionals (e.g. "if"), loop constructs (e.g. “while”,
“do”, “for”), function calls, etc. These missing pieces may be added through
general-purpose programming languages such as Java, C++, Visual Basic, or
any other language that can link to a C-style library.

The script language is case-insensitive, so you can use upper or lower case, or any
combination, as is convenient. You may also add extra spaces between elements of a
command for clarity, though a single command may not be split onto two lines.

The notation:
<servo list>

which appear in many places below indicates that a list such as:
1,2,4

is needed. The list shown above means that the servos 1, 2 and 4 are to be used by
the command. A servo list may have only one servo, or may consist of the single
word:

all
which means that all servos in the pod are involved. Servos are numbered starting
at 1. Similarly,

<digout list>
refers to a list of digital outputs (USB controller only) and

<aux list>
refers to a list of auxiliary outputs (LPT controller only).

Page 1 of 23

The notation:
<value>

means that a number (or sometimes a keyword) is expected. The specifics of the
number (or keywords) are discussed in the descriptions accompanying commands
below. For example:

accel <servo list> <value>
in an actual command might be:

accel 1, 2 100
where the servo list is 1 and 2, and <value> became 100, meaning that
acceleration for servos 1 and 2 is set to 100. Note that the angle brackets <> are
not used in an actual command.

Multiple commands may generally appear on a single line, separated by
semicolon characters ';'.

The units of position, speed and acceleration in the Rascal are not related to any
specific unit system and so are arbitrary although they are internally consistent: a
move of 50 will rotate a servo twice as far as a move of 25, within the servo's own
physical limits of positional accuracy. An acceleration of 10 will bring the servo
up to its maximum speed a given motion in half the time that an acceleration of 5
would take.

The complete script command set follows.

Page 2 of 23

ACCEL

Syntax
accel <servo list> <value>

Description
Sets the acceleration of the servos in <servo list> to <value>.
<value> must be in the range 1..10000.

See also: The accdec command for further discussion.

Page 3 of 23

ACCDEC

Syntax
accdec <servo list> <value>

Description
Sets both the acceleration and deceleration of the servos in <servo
list> to <value>.

<value> must be in the range 1..10000

Proper setting of acceleration and deceleration of a servo can help minimize
"oscillation" of the servo as it moves. This becomes more important when the
servo is moving a sizable mass.

Acceleration and deceleration may be set independently by the accel and decel
commands. Making the two values different is helpful, for example, in creating a
"snapping of the wrist" motion as when striking a drum with a stick.

Page 4 of 23

AUXA, AUXB (used with LPT controller only)

Syntax
auxa on|off
auxb on|off

Description
Turns Auxiliary output A or B on or off.

The output is useful for powering small loads, such as LED's, postage
stamp motors, etc.

Page 5 of 23

DECEL

Syntax
decel <servo list> <value>

Description
Sets the deceleration of the servos in <servo list> to <value>.

<value> must be in the range 1..10000

See the accdec command for further discussion.

Page 6 of 23

END

see macro

Page 7 of 23

ENUMBASE (Used with DOS software only)

Syntax
enumbase 0|1

Description
(Note: This command is for advanced users)

Changes the numbering of servos, sensors, parameters, etc. to zero-
based or one-based, according to <value> which may be either 1 or
0.

The default value is 1.

If you work in a language such as C you may prefer to number arrays
starting at 0, and may wish to adopt that convention here. This is
particularly true if you are also controlling the robot from C programs.

If you always want to use an enumbase of 0, you can edit the
rbx.bat file, adding a -e0 command line argument to the Device
Driver rbxdrv.exe.

It is recommended that you decide on basing as early as possible,
since changing the base after scripts have been created will cause
those scripts to have syntax errors or operate incorrectly.

Page 8 of 23

FORGET (Used with DOS software only)

Syntax
forget <macro name>
forget all

Description
The first form deletes the <macro name> and any other macro that
was defined after it.

The forget all form deletes all macros.

Page 9 of 23

INITPOS

Syntax
initpos <servo list> <value>

Description
Sets the servos' initial position, that is, where the servos will go when
a restart command is executed.

Sets the initial position of the servos in <servo list> to <value>.

<value> may be positive or negative. Values above a servo's
maxpos for a servo will be treated as if the value had been that servos
maxpos. Similarly, values below minpos will be treated as minpos.

See also: restart command.

Page 10 of 23

INVERT

Syntax
invert <servo list> on|off

Description
(Note: This command is for intermediate and advanced users.)

Turn inversion on or off for each servo in <servo list>.

Inverting a servo effectively makes it run counter to its normal
rotation. This can be useful when a servo's uninverted (default)
direction feels backwards to the programmer.

When a servo is inverted, relative move and jump commands (using
the keyword by) that used to turn the servo clockwise will turn it
counterclockwise, and vice versa. Similarly, moves and jumps to a
specific position will result in motion to a position on the other side of
p0pos, but at an equal distance from it, within the accuracy limits of
the servo.

p0pos, the physical zero position, is not affected by the invert
command.

At the time a servo's invert setting is changed, its pos, initpos,
minpos and maxpos all take on the opposite sign. Their physical
positions don’t change.

In practice it is common to put commands like the following at the top
of a script.

invert all off # clear current settings
invert x,x,x on # invert servos x,x,x

Page 11 of 23

MACRO ... ; END

Syntax
macro <name> ; <command> ; .. <command> ; end;

Description
A macro is a series of script commands that are executed by using the
macro name as a command.

LPT software only, does not apply to USB software: When defining a
macro, the macro command must be the first on its line. It labels the
following commands, up to the end command, as a new command,
<name>. The end command must be the last command on its line.

The commands in between macro and end may occupy multiple
lines, or an entire macro may occupy only a single line.

A macro is executed by using its name as a command, optionally
followed by a count indicating the number of times to execute the
macro. A count of 0 indicates indefinite repetition of the macro, or
until the <ESC> key is pressed or (for non-DOS only) a stop
command is issued by mouse action. For example:

Page 12 of 23

macro pen_up ; move 3 to 50; end
macro pen_down; move 3 to -140; end
macro pen_tap; pen_down; pen_up; end
pen_tap # tap the pen one time
pen_tap 1 # tap the pen one time
pen_tap 10 # tap the pen ten time
pen_tap 0 # tap the pen indefinitely
macro dot_space # multi line;

indented for clarity
pen_tap; # make a dot
move 4 by 10; # space between dots

end;
dot_space 5 # make 5 dots with spaces

For advanced programmers:
Macros may be called from your Java (w/ USB version only),
C++ or Visual Basic programs, or any other programming
language that can link with a C-style library. See API's under
Reference section of www.robix.com.

Page 13 of 23

MAXPOS

Syntax
maxpos <servo list> <value>

Description
Sets the maximum position that will be allowed during move or jump
commands for the servos in the list.

<value> can also be the keyword default which sets maxpos to
1400.

If a move or jump command would cause a servo to go past maxpos
in a positive direction, the move command will be interpreted as a
move to the maximum position.

When a maxpos command is executed, either initpos or minpos or
both may be greater than the new value of maxpos, which would be
inconsistent. In this case, one or both will be set equal to the new
value for maxpos.

Page 14 of 23

MAXSPD

Syntax
maxspd <servo list> <value>

Description
Sets the maximum speed that a servo may reach during execution of a
move command. The maxspd of a servo may not actually be reached
during a move command, but it will not be exceeded.

Note that during a restart or jump command, maxspd may be
exceeded since the servos move to their target positions as quickly as
possible.

Page 15 of 23

MINPOS

Syntax
minpos <servo list> <value>

Description
Sets the minimum position that will be allowed for the servos in the
servo list.

<value> can also be the keyword default which sets minpos to
-1400.

If a move or jump command would cause a servo to go past minpos
in a negative direction, the command will be interpreted as a move or
jump to the minimum position.

When a minpos command is executed, either initpos or minpos or
both may be below the new value of minpos, which would be
inconsistent. In this case, one or both will be set equal to the new
value of minpos.

Page 16 of 23

MOVE

Syntax
move <servo list> to <value>
move <servo list> by <value>
move <slist> to|by <val>[[,<slist> to|by <val>]..]

Description
The first type of move command, called an absolute move, is of the
form:

move <servo list> to <value>
which moves each listed servo to the position given by <value>.

The second type of move command, called a relative move, is of the
form.

move <servo list> by <value>
which moves each listed servo by the amount <value>.

For example,
move 1,2,3 to 0

would move the listed servos to position 0,
while:

move 3 by -50
would move servo 3 by 50 units negatively.

If several servos need to move at once to different positions and/or by
different amounts, then the third and most general form of the move
command is used. Note that this form allows a combination of
absolute and relative moves. In the example:

move 1 by 20, 2 to -400, 5,6 to -100
servo 1 will move by 20 units, 2 will move to position -400 and
servos 5 and 6 will move by -100.

Page 17 of 23

If a move command would carry a servo beyond its maxpos or
minpos, that servo's portion of the move is interpreted as a move to
the maxpos or minpos, as appropriate.

Servos included in a single move command move so that they start
and stop together with “coordinated” motion. Each servo accelerates
according to its accel setting and decelerates according to its decel
setting, and for each servo its speed does not exceed (and may not
reach) the servo maxspd.

For an absolute move or jump, <value> may be the word initpos,
maxpos or minpos, causing each listed servo to move to the
appropriate position. Thus, the command:

jump all to initpos

would have an effect similar to the restart command.

Page 18 of 23

P0POS

Syntax
p0pos <servo list> <value>

Description
(Note: This command is for advanced users.)

Set the "physical zero position" (hence the name "p0pos") of the listed
servos to the physical position given by <value>.

This command is typically used when hobby servos other than the
recommended servos Hitec HS422 or similar are used. For example, if
Futaba servos are used then p0pos, normally 3000, should probably be
adjusted to 2400, the center position of Futaba servos in general.

Page 19 of 23

PAUSE (Used with LPT Controller only)

Syntax
pause <value>

Description
Pause approximately <value> tenths of a second before executing
the next command.

See also: wait command, used with USB controller only.

Page 20 of 23

POWER

SAFETY NOTE:: THIS COMMAND DOES NOT TURN OFF THE SERVO

POWER SUPPLY, SO IN CASE OF MALFUNCTION THE ROBOT MIGHT BEGIN

TO MOVE SUDDENLY AND WITHOUT WARNING. TO COMPLETELY REMOVE

POWER FROM THE ROBOT YOU MUST UNPLUG THE POWER CORD.

Syntax
power <servo list> on|off

Description
(Note: this command is for advanced users.)

Applies power to (on) or removes power from (off) the listed servos.
When power to a servo is turned off, the servo becomes "relaxed" or
"compliant".

Move and jump commands may be applied to servos with their power
off. When power is restored, the servos will move immediately to
the position implied by the series of move and jump commands, and
shown as pos in the status window, if visible. Even if the servos have
been moved manually to a new position while power is off, when
power is restored they will move suddenly to their pos's.

Page 21 of 23

RESTART

Syntax
restart

Description
Moves all servos immediately to their initial positions, as specified by
the initpos value in the status window, if shown..

This command is typically run at the beginning of a robotic session to
bring the robot from whatever position it currently has to its initial
position.

Execution of the restart command may cause motion which is fast and
sudden as the robot jumps all servos to their initial positions.

LPT Controllers only: If power to the controller is physically
interrupted, the restart command should be executed either from a
menu or in a script since in LPT controllers the restart command also
reinitiallizes the controller.

Page 22 of 23

WAIT (Used with USB Controller only)

Syntax
wait <value>

Description
Wait approximately <value> tenths of a second before executing the
next command.

See also: pause command, used with LPT controller only

Note: The command name was changed from 'pause' to 'wait' because of some
confusion between the command and the on-screen 'pause' button.

Page 23 of 23

